
International Journal of Astrophysics and Space Science
2020; 8(4): 32-40
http://www.sciencepublishinggroup.com/j/ijass
doi: 10.11648/j.ijass.20200804.11
ISSN: 2376-7014 (Print); ISSN: 2376-7022 (Online)

Spherical Symmetric Kink-Like Configurations of Spinor
and Gravitational Fields
Jonas Edou1,∗, Alain Adomou1,2, Valerie Ida Senan Hontinfinde1,3, Siaka Massou1

1Department of Theoretical Physics and Mathematics, University of Abomey-Calavi, Abomey-Calavi, Benin
2Higher National Institute of Industrial Technology, University of Abomey, Abomey, Benin
3Higher National School of Mathematical Engineering and Modeling, University of Abomey, Abomey, Benin

Email address:
edjonas131988@gmail.com (J. Edou)
∗Corresponding author

To cite this article:
Jonas Edou, Alain Adomou, Valerie Ida Senan Hontinfinde, Siaka Massou. Spherical Symmetric Kink-Like Configurations of Spinor and
Gravitational Fields. International Journal of Astrophysics and Space Science. Vol. 8, No. 4, 2020, pp. 32-40.
doi: 10.11648/j.ijass.20200804.11

Received: March 26, 2020; Accepted: August 20, 2020; Published: January 11, 2021

Abstract: The present research work deals with an extension of a previous work [Exact Soliton-like spherical symmetric
solutions of the Heisenberg-Ivanenko type nonlinear spinor field equation in gravitational theory, Journal of Applied Mathematics
and Physics, 2020, 8, 1236-1254] to Spherical Symmetric Kink-Like Configurations of Spinor and Gravitational Fields. We
have obtained exact kink-like static spherical symmetric solutions to the self-consistent system of spinor and gravitational fields
equations. The Einstein’s field equations have been solved by the Liouville method. The principal difference between kink soliton
with antikink soliton has been established. The nonlinear terms in the lagrangian are arbitrary functions F (IS) depending on the
invariant IS = S2 = (ψ̄ψ)2. It is shown that the initial set of the Einstein and spinor field equations have regular solutions with
a localized energy density of the spinor field only if m = 0 ( m is the mass parameter in the spinor field equations). Equations
with polynomial nonlinearities are thoroughly scrutinized. Let us emphasize that the spinor field with polynomial nonlinearities
has a regular solutions with localized, positive and alternating energy density and finite total energy. In addition, the total charge
and the total spin are also finte. We have also obtained exact solutions to the linear spinor field equations. We remarked that in
this case soliton-like solutions are absent. Furthermore, we note that the properties of regular localized solutions depend on the
symmetry and the nonlinear terms in the lagrangian of the self-consistent system of gravitational and spinor fields.
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1. Introduction
The concept of soliton as regular localized stable solutions

of nonlinear differential equations is being widely utilized
in pure science [1, 2]. In elementary particle physics, for
example, the soliton concept is used as model in order to
describe the configuration of elementary particles. The soliton
model is dealt with by many autors in general relativity. The
solitons with spherical and/or cylindrical symmetry of the
interacting system of massless scalar, electromagnetic and
gravitational fields are obtained in [3]. An excellent review on
the solitons of scalar field with induced nonlinearity and their
stability may be found in [4]. For simplicity, the author has
considered Friedmann-Robertson-walker and Godel models
describing spherically and cylindically symmetric space-time

respectively. The plane-symmetric soliton-like solutions are
obtained in a series remarkable papers [5-8]. It should
be emphasized that, in all these activities, the charge and
the spin are not limited. Hence it follows that the own
gravitational field of the spinor field is insufficient. The
unlimitted problem of the charge and the spin is resolved
in a series of interesting article [9-13]. The exact kink-
like static plane-symmetric solutions to the self-consistent of
interacting scalar, electromagnetic and gravitational fields are
obtained in [14]. It was shown that under certain choice
of the interaction lagrangian the solutions are regular and
have localized energy. The importance of the symmetries
in gravitational theory is introduced by Katzin, Lavine and
Davis in a series of remarkable articles. The fundamental
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symmetry of the space-time of the general relativity defined by
the vanishing Lie derivative of the Riemann curvature tensor is
analyzed in [15]. The details literatue on groups of curvature
collineation in Riemannian space-times, which admit fields
of parallel may found in [16, 17]. The applications of Lie
derivative to symmetries geodesic mappings and first integrals
in Riemannian spaces is developped in [18]. The consideration
of the proper gravitational field of elementary particles leads to
definite the physical interest interpretations of exact solutions
obtained because the gravitational field equation is nonlinear
by nature. With the introduction of the nonlinear terms in
the lagrangian, describing the fields interactions, the field
equations possess regular solutions.

The present work, considered as part III of all these
investigated initiated in [12], aims and extending the results
to spherical symmetric kink-like configurations of spinor and
gravitational fields. Here, intead of equations with power
nonlinearities examined in [12], we have studied in detail
equations with polynomial nonlinearities.

The purpose of the paper was to present some new results
in addition to those illustrated in [12] to spherical symmetric
kink-like configurations of spinor and gravitational fields.

The paper is organized as follows. Section 2 deals with
general equations. The lagrangian of the self-consistent
of spinor and gravitational fields and the metric have been
defined. From the lagrangian, we obtained the Einstein
equations and the spinor field equation. Section 3 addresses
the main results. Using the method of Liouville, we solved
Einstein equations. In section 4, we discussed the main
results by choosing the nonlinear terms in the lagrangian under
the polynomial nonlinearities form. Concluding remarks and
future work are outlined in section 5.

2. General Equations
The lagrangian of the self-consistent system density of the

nonlinear spinor and gravitational fields is [6]:

L =
R

2χ
+ LSp. (1)

where LSp is the spinor field lagrangian. Its expression is
defined as follows:

LSp =
i

2
(ψ̄γµ∇µψ −∇µψ̄γµψ)−mψ̄ψ + LN . (2)

Note that LN is the nonlinear term of LSp which describes
the self-interaction of a spinor field. LN = F (IS) is an
arbitrary function depending on the invariant IS = S2 =

(ψ̄ψ)2. R = Rµνgµν is the scalar curvature. Then, χ = 8ΠG
c4

is Einstein’s gravitational constant, G is Newton’s gravitational
constant and c is the speed of light in vacuum. ψ is the 4-
components Dirac’s spinor with ψ̄ its conjugate. The following
paragraph will address to the metric.

The metric of space-time admitting spherical symmetric
may be written under the following form:

ds2 = e2γdt2 − e2αdξ2 − e2β [dθ2 + sin2(θ)dϕ2]. (3)

For simplicity reason, the speed of light has been taken to be
unity (c=1) . We define spatial variable as in [6] ξ = 1

r , where
r stands for the radial component of the spherical symmetric
metric. The metric functions, α, β and γ are stationnary and
are functions of ξ alone. They obey the harmonic coordinate
condition as in [6-9]:

α = 2β + γ. (4)

Varying of (1) with respect to the spinor field ψ and its
conjugate ψ̄ gives nonlinear spinor field equations as follows:

iγµ∇µψ −mψ + 2
√
IS
dF

dIS
ψ = 0, (5)

i∇µψ̄γµ +mψ̄ − 2
√
IS
dF

dIS
ψ̄ = 0, (6)

Then, varying of (1) with respect to the metric tensor gµν
leads the general form of Einstein’s field equation:

Gνµ = Rνµ −
1

2
δνµR = −χT νµ , (7)

where Gνµ is the Einstein’s tensor; Rνµ is the Ricci’s tensor;
δνµ is the Kronecker’s symbol and T νµ is the metric energy-
momentum tensor of the spinor field. In the sequel, taking
into account (1), we obtain the components of the tensorGνµ in
the metric (3) under the coordinate condition (4) as in [9]:

G0
0 = e−2α(2β′′ − 2γ′β′ − β′2)− e−2β = −χT 0

0 , (8)
G1

1 = e−2α(2β′γ′ + β′2)− e−2β = −χT 1
1 , (9)

G2
2 = e−2α(β′′ + γ′′ − 2β′γ′ − β′2) = −χT 2

2 , (10)

G2
2 = G3

3, T 2
2 = T 3

3 , (11)

where prime (′) in previous equations means differentiation
with respect to ξ.

The components of the metric energy-momentum tensor of
the spinor field can be written as follows:

T νµ =
i

4
gνρ(ψ̄γµ∇νψ + ψ̄γν∇µψ −∇µψ̄γνψ −∇νψ̄γµψ)− δνµLSp. (12)
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Using the spinor field equations (5) and (6), LSp takes the following form:

LSP =
1

2
ψ̄(iγµ∇µψ −mψ)− 1

2
(i∇µψ̄γµ +mψ̄)ψ + F (IS), (13)

= −2S2 ∂F

∂IS
+ F (IS), (14)

= −2IS
∂F

∂IS
+ F (IS). (15)

Taking into account (15), let us write the nontrivial
components of the tensor T νµ :

T 0
0 = T 2

2 = T 3
3 = −LSp = 2IS

∂F (IS)

∂IS
− F (IS), (16)

T 1
1 =

i

2
(ψ̄γ1∇1ψ−∇1ψ̄γ

1ψ)+2IS
∂F (IS)

∂IS
−F (IS). (17)

Let us emphasize that γµ represent Dirac’s matrices in
curved space-time. They are linked to Dirac’s matrices in flat
space-time γ̄a by:

gµν(ξ) = eaµ(ξ)ebν(ξ)ηab

γµ(ξ) = eaµ(ξ)γ̄a, (18)

where ηab = diag(1,−1,−1,−1) is the metric of Minkowski
and eaµ(ξ) are tetradic 4-vectors.

With the relation (18), we have:

γ0(ξ) = e−γ γ̄0 , γ1(ξ) = e−αγ̄1 , γ2(ξ) = e−β γ̄2 , γ3(ξ) = e−β γ̄3

sin θ , , γ5(ξ) = γ̄5 (19)

The Dirac’s matrices in flat space-time are taken in the following way [19, 20]:

γ̄0 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 ; γ̄1 =


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0



γ̄2 =


0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0

 ; γ̄3 =


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0



γ5 = γ̄5 =


0 0 −1 0
0 0 0 −1
−1 0 0 0
0 −1 0 0


In the expressions (2), (5)-(6) and (12), ∇µ represent the covariant derivative of the spinor meaning. It is connected to the

spinor affine connection matrices Γµ(ξ) as in [21]:

∇µψ =
∂ψ

∂ξµ
− Γµψ or ∇µψ̄ =

∂ψ̄

∂ξµ
+ Γµψ̄. (20)

The matrice Γµψ, has the following general form:

Γµ(ξ) =
1

4
gρµ(∂µe

b
σe
ρ
a − Γρµσ)γδγσ, (21)

In the relation (21), Γρµσ are Christoffel’s symbols. According to the expression (21), we have the spinor affine connection
matrices:

Γ0 = −1

2
e−2β γ̄0γ̄1γ′, Γ1 = 0, Γ2 =

1

2
e−β−γ γ̄2γ̄1β′, Γ3 =

1

2
(e−β−γ γ̄3γ̄1β′ sin θ + γ̄3γ̄2 cos θ). (22)

In virtue of Einstein’s convention sommation, we get:

γµΓµ = −1

2
(e−αα′γ̄1 + γ̄2e−β cot θ). (23)
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When we substitute (20) and (23) into (5) (6), we have

ie−αγ̄1(∂ξ +
1

2
α′)ψ +

i

2
γ̄2e−βψ cot θ −

(
m− 2

√
IS
dF

dIS

)
ψ = 0, (24)

ie−αγ̄1(∂ξ +
1

2
α′)ψ̄ +

i

2
γ̄2e−βψ̄ cot θ +

(
m− 2

√
IS
dF

dIS

)
ψ̄ = 0. (25)

By choosing the 4-component Dirac spinor under the form ψ(ξ) = Vδ(ξ) with Vδ(ξ) =


V1(ξ)
V2(ξ)
V3(ξ)
V4(ξ)

, from (24), we get the

following set of equations:

V ′4 +
1

2
α′V4 −

i

2
eα−βV4 cot θ + ieα

(
m− 2

√
IS
dF

dIS

)
V1 = 0, (26)

V ′3 +
1

2
α′V3 +

i

2
eα−βV3 cot θ + ieα

(
m− 2

√
IS
dF

dIS

)
V2 = 0, (27)

V ′2 +
1

2
α′V2 −

i

2
eα−βV2 cot θ − ieα

(
m− 2

√
IS
dF

dIS

)
V3 = 0, (28)

V ′1 +
1

2
α′V1 +

i

2
eα−βV1 cot θ − ieα

(
m− 2

√
IS
dF

dIS

)
V4 = 0. (29)

The functions V1, V2, V3 and V4 are connected by the relation:

V 2
1 − V 2

2 − V 2
3 + V 2

4 = cste. (30)

3. Main Results

Summing the set of equations (26)-(29), we find the first-
order differential equation for the invariant function IS = S2

as follows:

dIS
dξ

+ 2α′(ξ)IS = 0. (31)

The solution of the equation (31) is:

IS(ξ) = C0 exp[−2α(ξ)], C0 = const. (32)

With the expression (32), we deduce the natural link
between the nonlinear spinor field of elementary particles and
their own gravitational field.

Using the spinor field equation in the form (24) and the
conjugate one, we obtain the following expression for the
tensor T 1

1 from the relation (17):

T 1
1 = m

√
IS − F (IS). (33)

The following paragraph devotes to the resolution of
Einstein’s field equations. To this purpose, as the
commponents T 0

0 and T 2
2 are equal, we have G0

0 − G2
2 = 0.

This leads to the following equation:

β′′ − γ′′ = e2β+2γ , (34)

which can be transformed into a Liouville equation type having
the solutions [16]:

β(ξ) =
A

4
(1 +

2

D
) ln

[
A

DT 2(h, ξ + ξ1)

]
=

(
1 +

2

D

)
γ(ξ), (35)

γ(ξ) =
A

4
ln

[
A

DT 2(h, ξ + ξ1)

]
, (36)

A and D are integration constants and T is a function.The
function T has the following form:

T (h, ξ + ξ1) =


1
hsinh[h(ξ + ξ1)], h > 0

(ξ + ξ1), h = 0

1
hsin[h(ξ + ξ1)], h < 0

(37)

where h and ξ1 are another unknown integration constants.
By substituting the expressions (35) and (36) into (4), we

get the metric function α(ξ) as follows:

α(ξ) =
A

2

(
3

2
+

2

D

)
ln

[
A

DT 2(h, ξ + ξ1)

]
. (38)

Finally we define the relations between the metric functions
α(ξ), β(ξ) and γ(ξ):

β(ξ) =
2 +D

4 + 3D
α(ξ); γ(ξ) =

D

4 + 3D
α(ξ). (39)
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Equation (9) look likes to the first integral of the equatons (8) and (10). It is also a first order differential equation. Then,
introducing (33) and (39)into (9), we have

(α′)2 =
(4 + 3D)2

3D2 + 8D + 4
e2α

[
e

−4−2D
4+2D α − χ(m

√
IS − F (IS))

]
. (40)

Taking into account α′ = − 1
2IS

dIS
dξ and IS(ξ) = C0e

−2α(ξ), from (40) we obtain

dIS
dξ

= ± 2
√
C0(4 + 3D)√

3D2 + 8D + 4

√
IS

√√√√[( IS
C0

) 2+D
4+3D

− χ
(
m
√
IS − F (IS)

)]
(41)

The general solutions of the equation (41) are given by:∫
dIS

√
IS

√[(
IS
C0

) 2+D
4+3D − χ

(
m
√
IS − F (IS)

)] = ± 2
√
C0(4 + 3D)√

3D2 + 8D + 4
(ξ + ξ0) (42)

Setting a concrete form of the function F (IS), from (42) we
can determine explicitly IS(ξ). Then, if IS(ξ) is known, we
can find the metric function α(ξ) from (32). Finally, we can
completely determine the solutions of Einstein equations from
the expression (39).

Considering the invariant IS(ξ) = C0e
−2α(ξ), we can

establish the regularity properties of the solutions obtained.
Studying the distribution of the energy per unit invariant

volume T 0
0

√
−3g , we can establish the localization properties

of the solutions.
Let us determine the concrete analytical form of the

functions Vδ(ξ). To doing so, we must solve the set of
equations (26)-(29) in more compacte form if we pass to the
functions Wδ(ξ) = e

α
2 Vδ(ξ), with δ = 1, 2, 3, 4. In this

perspective, we obtain:

W ′4 −
i

2
eα−βW4 cot θ + ieα

(
m− 2

√
IS
dF

dIS

)
W1 = 0, (43)

W ′3 +
i

2
eα−βW3 cot θ + ieα

(
m− 2

√
IS
dF

dIS

)
W2 = 0, (44)

W ′2 −
i

2
eα−βW2 cot θ − ieα

(
m− 2

√
IS
dF

dIS

)
W3 = 0, (45)

W ′1 +
i

2
eα−βW1 cot θ − ieα

(
m− 2

√
IS
dF

dIS

)
W4 = 0, (46)

where the derivative of the function Wρ(ξ) has the form:

W ′ρ = (V ′ρ +
1

2
α′Vρ)e

1
2α. (47)

With the set of equations (43)-(46) where W = Wδ(ξ) let us pass to the system of equations depending on functions of the
argument IS , i.e. Wδ(IS) = Wδ(ξ), IS(ξ) = C0e

−2α(ξ). We obtain for Wδ(IS) the set of equations as follows:

dW4

dIS
− iE(IS)W4 + iK(IS)W1 = 0, (48)

dW3

dIS
+ iE(IS)W3 + iK(IS)W2 = 0, (49)

dW2

dIS
− iE(IS)W2 − iK(IS)W3 = 0, (50)

dW1

dIS
+ iE(IS)W1 − iK(IS)W4 = 0, (51)

where E(IS) and K(IS) are defined by the following expressions:
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E(IS) =
1

2

(√
C0

IS

) 2+2D
4+3D

cot θ

2
√
C0(4+3D)√

3D2+8D+4

√
IS

√[(
IS
C0

) 2+D
4+3D − χ

(
m
√
IS − F (IS)

)] ; (52)

K(IS) =

(√
C0

IS

)(
m− 2

√
IS

dF
dIS

)
2
√
C0(4+3D)√

3D2+8D+4

√
IS

√[(
IS
C0

) 2+D
4+3D − χ

(
m
√
IS − F (IS)

)] (53)

In sequel, we shall transform the equation (48)-(51) to the second order differential equations. In this perspective,
differentiating equation (48) and substituting the expression of the function W1(IS) and the expression of its derivative into the
result, we obtain:

W ′′4 −
K ′(IS)

K(IS)
W ′4 +

[
E2(IS)−K2(IS) + i

K ′(IS)E(IS)−K(IS)E′(IS)

K(IS)

]
W4 = 0. (54)

Similarly differentiating the equation (51) and introducing into the result the expression of W4(IS) and the expression of its
derivative, we obtain the second-order differential equation for the function W1(IS):

W ′′1 −
K ′(IS)

K(IS)
W ′1 +

[
E2(IS)−K2(IS) + i

K(IS)E′(IS)−K ′(IS)E′(IS)

K(IS)

]
W1 = 0. (55)

Doing the same operating on the equations (49)-(50), we find the second-order differential equations obeyed by the functions
W2(IS) and W3(IS) as follows:

W ′′3 −
K ′(IS)

K(IS)
W ′3 +

[
E2(IS)−K2(IS) + i

K(IS)E′(IS)−K ′(IS)E′(IS)

K(IS)

]
W3 = 0. (56)

W ′′2 −
K ′(IS)

K(IS)
W ′2 +

[
E2(IS)−K2(IS) + i

K ′(IS)E(IS)−K(IS)E′(IS)

K(IS)

]
W2 = 0. (57)

By summing (54)-(55) and setting U = W1 +W4, we obtain the following second-order differential equations of the function
U(IS):

U ′′(IS)− K ′(IS)

K(IS)
U ′(IS) + 2

[
E2(IP )−K2(IS)

]
U(IS) = 0. (58)

The equation (58) may be transformed to:

1

K(IS)
√

2ε

d

dIS

[
U ′(IS)

K(IS)
√

2ε

]
− U(IS) = 0 (59)

under the condition E2(IS) = (1− ε)K2(IS) with 0 < ε ≤ 1.
The first integral of the equation (59) is

U ′(IS) = ±
√
U2(IS) + C1K(IS)

√
2ε, C1 = const. (60)

If C1 = a2
1 > 0, then the equation (60) has the solution

U(IS) = a1sinhN1(IS). (61)

If C1 = −b21 < 0, the solution of the equation (58) is given by:

U(IS) = b1coshN1(IS). (62)

with
N1(IS) =

√
2ε

∫
K(IS)dIS +R1, R1 = const. (63)
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The difference of equations (48) and (51), taking into account of (61) and (62), gives:

X(IS) = W1 −W4 = −ia1

(√
1− ε− 1√

2ε

)
coshN1(IS), (64)

or

X(IS) = W1 −W4 = −ib1
(√

1− ε− 1√
2ε

)
sinhN1(IS), (65)

where a1 and b1 are integration constants.
Solving analogously the equations (56) and (57), we obtain the following expressions for Y (IS) = W2 +W3 as follows:

Y (IS) = a2sinhN2(IS), for C2 = a2
2 > 0 (66)

or
Y (IS) = b2coshN2(IS), for C2 = −b22 < 0. (67)

In these conditions, it then follows from the expressions (66) and (67) that:

V (IS) = W2 −W3 = ia2

(√
1− ε− 1√

2ε

)
coshN2(IS), (68)

or

V (IS) = W2 −W3 = ib2

(√
1− ε− 1√

2ε

)
sinhN2(IS), (69)

N2(IP ) =
√

2ε

∫
H(IP )dIP +R2, (70)

where a2, b2 and R2 are integration constants.
Considering the cases where C1 = a2

1 > 0 and C2 = −b22 < 0, let us determine the expressions of the functions Wδ(IS). We
get for the functions Wδ(IS) the following expressions:

W1(IS) = a0

[
sinhN1(IS)− i

(√
1− ε− 1√

2ε

)
coshN1(IS)

]
, (71)

W2(IS) = b0

[
coshN2(IS) + i

(√
1− ε− 1√

2ε

)
sinhN2(IS)

]
, (72)

W3(IS) = b0

[
coshN2(IS)− i

(√
1− ε− 1√

2ε

)
sinhN2(IS)

]
, (73)

W4(IS) = a0

[
sinhN1(IS) + i

(√
1− ε− 1√

2ε

)
coshN1(IS)

]
, (74)

with a0 = 1
2a1 and b0 = 1

2b2.
Let us note that we can also obtain the expressins of the funstions Wδ(IS) considering C1 = −b21 < 0 and C2 = a2

2 > 0.
Furthermore, in the relations (63) and (70), without loss of generality we can use the minus sign before the integral. Let us pass
to the functions Vδ(ξ) by multiplying the functions Wδ(ξ) obtained in the expressions (71)-(74) by e−

1
2α(ξ) as follows:

V1(ξ) = a0

[
sinhN1(ξ)− i

(√
1− ε− 1√

2ε

)
coshN1(ξ)

]
exp

{
−A

4

(
3

2
+

2

D

)
ln

[
A

DT 2(h, ξ + ξ1)

]}
(75)

V2(ξ) = b0

[
coshN2(ξ) + i

(√
1− ε− 1√

2ε

)
sinhN2(ξ)

]
exp

{
−A

4

(
3

2
+

2

D

)
ln

[
A

DT 2(h, ξ + ξ1)

]}
(76)

V3(ξ) = b0

[
coshN2(ξ)− i

(√
1− ε− 1√

2ε

)
sinhN2(ξ)

]
exp

{
−A

4

(
3

2
+

2

D

)
ln

[
A

DT 2(h, ξ + ξ1)

]}
(77)

V4(ξ) = a0

[
sinhN1(ξ) + i

(√
1− ε− 1√

2ε

)
coshN1(ξ)

]
exp

{
−A

4

(
3

2
+

2

D

)
ln

[
A

DT 2(h, ξ + ξ1)

]}
(78)
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Using analytical expressions of the functions Vδ(ξ), the total
chargeQ and spin S1 have been determined in [12]. It has been
emphasized that the total charge and spin are limited.

In the following section, we shall deal with the analysis of
the main results by choosing the concrete form of the nonlinear
terms F (IS).

4. Discussion

The equations with power nonlinearities have been
thoroughly discussed by us in [12] where we have obtained
exact soliton-like spherical symmetric solutions of the
Heisenberg-Ivanenko type nonliear spinor field equation in
gravitational theory. In this present analysis, the nonlinear
terms F (IS) in the lagrangian have been chosen under the
polynomial nonlinearities form as follows:

F (IS) = λ

(√
IS
ω2

0

− 1

)2(
2−

√
IS
ω2

0

)2

. (79)

where λ is a nonlinearity parameter.
In this optic, the nonlinear terms F (IS) admit two nonzero

roots IS = ω2
0 and IS = 4ω2

0 .
Without losing the generality, we have chosen the massless

elementary particles (m = 0) [22] and we have assumed that
1
C0
−→ 0.

Under the assumption made above, by substituting (79)
into (42), we have obtained the analytical expression of the
invariant function IS :

IS1
= ω2

0

[
2− 1

exp[ζ0(ξ + ξ0)]

]2

, (80)

IS2
= ω2

0

[
2− 1

exp[−ζ0(ξ + ξ0)]

]2

, (81)

where

ζ0 =
C0λ(4 + 3D)

ω0

√
3D2 + 8D + 4

= const.

From the relations (80) and (81), the function Iv is regular.
Therefore, as e2α = C0

IS
, according to (31), the metric is

regular everywhere for ξ ∈ [0, ξC ]. The energy density is given
by the following expression:

T 0
0(1,2) =

λe±ζ0(ξ+ξ0)
[
2 + e±ζ0(ξ+ξ0) − 4e±2ζ0(ξ+ξ0)

]
[1 + e±ζ0(ξ+ξ0)]

4 (82)

From the expression (82), the energy density T 0
0 (ξ) of

nonlinear spin field is a positive, alternating, regular and
localized function. Moreover, the total energy E =∫ ξc

0
T 0

0(1,2)

√
3−gdξ is positive and finite.

We note that the functions IS1
and IS2

describe the kink
and antikink solitons-like solutions. The indices 1 and 2 refer
to kink and antikink in the expression of the energy density
T 0

0 (ξ). The study of the kink and antikink configurations in
plane-symmetric metric may found in [6].

5. Concluding Remarks

Taking into account the proper gravitational field of
elementary particles, we obtained the spherical symmetric
kink-like solutions of nonlinear spinor and Einstein equations
when the nonlinear terms in the larangian is chosen under
the polynomial nonlinearities form. These solutions describe
a nonlinear spinor field configuration with localized energy
density T 0

0 , positive energy E and a regular metric ds2. The
forthcoming paper will deal with Spherical symmetric solitons
of interacting spinor and scalar fields in general relativity
theory.
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